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Abstract-The paper is concerned with the development of hybrid-Trefftz (HT) p-element for
nonlinear analysis of Reissner-Mindlin plates resting on an elastic foundation. The foundation may
be of Winkler-type or Pasternak-type. Exact solutions of the Lame-Navier equations are used for
the in-plane intraelement displacement field and an incremental form of the basic equations is
adopted. With the aid of incremental form of these equations, all nonlinear terms may be taken as
pseudo-loads. Moreover, some modifications have been made on the nonlinear boundary equations
to simplify the ensuing derivation. As a result, the in-plane and out-of-plane equations are
uncoupled, and then the derivation for the HT finite element (FE) formulation becomes very simple.
The practical efficiency of the new element model has been assessed through several examples.
Copyright ''9 1996 Elsevier Science Ltd

NOTATION

C 5Et/12(l + v) for a homogeneous plate, G,(h + t) for a sandwich plate
Gw a part of boundary an of the solution domain n, on which deflection W is prescribed, CM",CR etc.

are defined similarly
D Et3/12(l-v2) for a homogeneous plate, E(h+ t)2t/2(I-v2) for a sandwich plate
E modulus of elasticity
G E/2(1 +v)
G, core shear modulus
Gp shear modulus of Pasternak-type foundation
kp reaction coefficient of Pasternak-type foundation
k w reaction coefficient of Winkler-type foundation
h core thickness
M ij bending moment
M ij twisting moment (i # j)
N;; membrane force
ni components of the outward normal to the boundary an
q lateral distributed load
Qi transverse shear force
r (x2+/)' /2
R Q,n,+NnW,n + N ns w"
Si components of the tangent to the boundary an
t plate thickness (or face-sheet thickness)
U, in-plane displacements
W lateral deflection
o variational symbol
0;; Kronecker delta
e arctg (y/x)
P 10/t2 for a homogeneous plate, 4(1 +v)G,/E(h+t)t for a sandwich plate
v Poisson's ratio
'\12 a2/ax2+a2/a/
'Pi the average rotations normal to the plate mid-surface

1. INTRODUCTION

The hybrid-Trefftz finite element model initiated in 1977 (Jirousek and Leon, 1977;
Jirousek, 1978) is now well-established. The method has been widely used in plane elasticity
(Jirousek and Teodorescu, 1982; Jirousek and Venkatesh, 1992), plate bending (Jirousek
and Guex, 1986; Jirousek and N'Diaye, 1990; Qin, 1994), shells (Voros and Jirousek,
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1991), axisymmetric solid mechanics (Wroblewski et of. 1992), Poisson's equation (Zielinski
and Zienkiewicz, 1985) and heat transfer (Jirousek and Qin, 1995). Further, the p-extension
of HT elements was formed in 1982 (Jirousek and Teodorescu, 1982) and has already been
found to be particularly advantageous from both the computational point of view and
facilities for use. Recently, a detailed assessment on the properties of p-elements has been
done (Jirousek and Venkatesh, 1989, 1990; Jirousek et al., 1993). As far as we know,
however, there are very few results by HT FE approach for nonlinear problems.

This paper aims at developing a HT p-element model for nonlinear analysis of Reissner
plates on an elastic foundation which may be of Winkler-type or Pasternak-type. The main
difference between these two foundations is whether the effect of shear interactions is
included. By way of an incremental form of the basic equations and some modifications on
nonlinear boundary equations, the in-plane and out-of-plane equations are uncoupled. As
a consequence, the solution procedure for nonlinear plates becomes quite simple. At the
end of the paper, several numerical examples are considered to verify the suitability of the
method.

2. GOVERNING EQUATIONS AND THEIR TREFFTZ FUNCTIONS

2.1. Basic equations
Consider a Reissner-Mindlin plate of uniform thickness t, 2-D region 0 bounded by

its boundary 00 and resting on an elastic foundation. Throughout this paper repeated
indices i, j and k take values in the range {l, 2}. The nonlinear behavior of the plate is
governed by the following equations (Qin, 1993)

(1)

(2)

(3)

(4)

(5)

with

L110 =O.xx+dlO.YY'

L!2C) = L 21 0 = d20.xp

L 22 0 =O.yy+d10.xx

L 34 0 = -L43 0 = -CO,x, L 35 0 = -L53 0 = -CO,y

L44 = DL11 -C, L45 = L 54 = DL I2 ,

L 55 = DL22 -C, U j = Ux , U2 = Up CPl = CPD

CP2 = CPy, dj =(1-v)/2, d2 =(1+v)/2

{
CV2 +k w for Winkler-type foundation,

L 33 =
(C-Gp )V2 +kp for Pasternak-type foundation

in which a comma followed by a subscript indicates partial differentiation with respect to
that subscript, and PI. P2 and P3 are components of pseudo-distributed load defined by
(Qin and Huang, 1990; Huang et al., 1992).
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PI = - W,AW,xx+dl W,yy)-dzW,yW,xy

P2 = - W,y(W,yy +d1 W,xx)-d2 w'x w'xy

P 3 = J{ (U1,x + 0,5 W~)(W,xx + VW,yy) + (U2,y +0.5 W~)(W,yy +V W,xx)}

+J(1- v)(UI,y + U2 ,x + w'x w,y) w,xy + q

where

Et
J=-­

I-v 2

and the boundary conditions are

Un = Ujn j = an (on C u), Us = UiSi = as (on C u),

({In = ({Jjni = ({In (on C<p)' ({Js = ({JjSi = ({Js (on C<p)

W= W(on Cw),

N t n - (N ns = ns+Nns = N ns on CN.),

4585

(6)

(7)

R = R'+R n = R(on CR ),

where overbar means the prescribed value, and a = 1 for the Pasternak-type foundation,
a = 0 for the Winkler one.

Finally, the constitutive relationships are given by

(10)

(11)

(12)

(13)

Noting that eqns (1 )-(5) are not, in general, suitable for HT FE analysis, an incremental
form of the equations must therefore be adopted to linearize these nonlinear equations,
Denoting the incremental variable by the superimposed dot and omitting those infinitesimal
terms resulting from the product of incremental variables, one obtains
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LltOt +L12 02 = 1\

Ot = Oini = LlUn(on Cu), Os = O;Si = LlUs(on Cu),

CPn = cp;n; = Llipn (on C",), CPs = cps; = Llips (on C<p)'

R = Qtn; = (LlR-Rn) = R* (on CR )

M n = M;jn;nj -I1.Gp W = LlMn (on CM)

(14)

(15)

(16)

(17)

(18)

(19)

(20)

(21)

(22)

where (see Qin and Huang, 1990)

1\ = - W,x(W,xx+dl w,yy)- W,AW,xx+dl W,yy)-d2 W,yW,xy-d2 W,yW,xy

1\ = - w,y(W,yy+d1 w,xx) - w,y(w,yy +dl w,xx) -d2 w,xW,Xy -d2w'x W,Xy

1\ = J{ (Ol.x + w'x W,x)(W,xx + vw,yy) + (U1,x +0.5 W.~)(W,xx + vw,yy)

+ (02,y + w,y w,y)( w,yy + vw,xx) + (U2,y + 0.5 W~)( W,yy + vw,xJ}

+ J(1 - v) {(01,y + 02,x + w'x w,y + w'x w,y) w,xy + (UI,y + U2,x + w'x w,y) W,Xy} + q

It should be pointed out that Nij « N~j, Rn « kl in practical problems. So we may move
these nonlinear terms to the right-hand side of the above boundary equations. In this way,
the in-plane and out-of-plane boundary equations are uncoupled. As a result, the ensuing
derivation becomes quite simple, but an iterative approach is required to evaluate the
nonlinear terms Pi, N~, it:, and R*.

2.2. Trefftz functions
The Trefftz functions play an important role in the derivation of HT finite element

formulation. In this subsection, the construction of Trefftz functions for Reissner plates on
elastic foundations will be discussed in detail. The Trefftz functions of eqns (14) and (15)
can be generated in a systematic way from Muskhelishvili's complex variable formulation
(Jirousek and Venkatesh, 1992; Green and Zerna, 1968). For the reader's convenience, we
list those results as follows (Jirousek and Venkatesh, 1992):
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Uj= {~~::} with Zlk = (3 -v)izk + (1 +v)kizZk
-

1

U* {Re Z2k} . h J: -k- Ij+l = ImZ2k Wlt Z2k =(3-v)z -(1+v)kzz

{
ReZ3k } • '-k

Uj+2 = ImZ
3
k wlthZ3k =(1-V)IZ

* {Re Z4k} . ,.kU j + 3 = ImZ4k wlthZ4k = -(1+v)z
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(23)

(24)

(25)

(26)

where z = x+iy, z = x-iy and i = j=1, Re(Z) and Im(Z) stand for the real part and
the imaginary part of Z, respectively, and where Ujsatisfies

with

L
l2J U*= {ur}

L 22 ' } U~ j

(27)

(28)

What follows is to derive the Trefftz functions of (16)-(18). Following Qin (1993), these
three equations can be transformed into a convenient form

(29)

(30)

where I and 9 are two of Hu's functions (Qin, 1993), f is the subgrade reaction operator,
f = kw for Winkler-type foundation, f = kp -G/;;2 for Pasternak-type foundation, and

D 2
W=g--V 9

C
(31)

(32)

(33)

Equation (29) is the modified Helmholz equation, for which its Trefftz functions can
be expressed, in polar coordinates rand 0, as

1m = Im(}.r) cosmO, Im+l = Im(Ar)sinmO(m = 0, 1,2, ... ) (34)

where I m() stands for the modified Bessel function of the first kind with order m.
Turning our attention to derive Trefftz functions for equation (30). To this end,

consider the homogeneous equation

(35)

where
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C 1 = J(k/2C)2 +k/D+k/2C

C2 = J(k/2C)2 +k/D-k/2C

for a Winkler-type foundation, or

Jb+kp/C+Gp/D
C j = 2(1-Gp/C)

Jb-kp/C-Gp/D
C2 = 2(1-Gp/C)

b = (kp/C+ Gp/D) 2 +4kp(1-Gp/C)/D

for a Pasternak-type foundation.
Following Qin (1993), we may set

(36)

(37)

The Trefftz functions for (36) and (37) can be expressed by

where f m() is Bessel function of the first kind with order m.
Therefore the Trefftz functions of (35) can be given from the following sequence

00

g(r, e) = coFo(r) + L [cmFm(r) cos me+dmFm(r) sin me]
m=l

where

(38)

(39)

(40)

2.3. Assumedfields
The HT FE model is based on assuming two distinct displacements: the internal field

U and the frame function D (Jirousek and Venkatesh, 1992). The field U fulfills identically
the governing differential equations and is assumed as

(41)

(42)

where Cin and COUI are two undetermined vectors and D, W, Nino Noul are known functions
which satisfy
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and where N in and Now are formed by a suitably truncated complete system of (23)-(26),
(34) and (40). While the particular solution 'tV is given by

such that

and

where

o {' Dt72 'IC 0 '}TW = g- v 9 ,g,x,g,y

D t74 0 k Dt72 , k-'v g+ - v g- 9 = -q
C

go = 0, g} = Fo(r), g2 = Ft(r)cos8, g3 = F}(r)sin8, .

10 = 0, It = IoU,r), 12 = I} (Ar) cos 8, 13 = II (Ar) sin 8, .

(43)

(44)

(45)

The indices i, j and k are ordered as shown in Table 1. Such ordering makes it easy to
preserve the invariant properties of element under the rotation of its coordinate axis when
the set is truncated.

Furthermore, to enforce on U the conformity, ue = l.Y on ane n ani (where "e" and
"I" stand for any two neighboring elements), we will use an auxiliary interelement frame
field D approximated in terms of the same degrees of freedom (DOF), d, as in the con­
ventional elements. The conforming frame field are assumed as

(46)

where

Table I. Ordering of indexes in eqn (45)

k

j
I
o

2

o
I

3

2
o

4

3
o

5

o
2

6

4
o

7

5
o

8

o
3
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YL
o x

A -------<A-----..YL
o x

A Z

• 0
p = -1 0

b)

B

p = +1

OW, aI, bI , PI,···

Fig. 1. The HT p-element.

(47)

(48)

(49)

(50)

and where din and do"! stand for vectors of in-plane and out-of-plane displacement nodal
parameters, and Ni (i = 1,2,3,4,5) are the usual FE interpolation functions.

In the development of the present p-method elements, the following assumptions are
adopted. First of all, the element may be of a general quadrilateral shape or a triangular
shape with five DOF (01, Ob W, 0/[, 0/2) at each corner node and with one DOF (W), at
each mid-side node (see Fig. 1). In this case, the in-plane displacements and rotations are
linear along a side of the element boundary, and the boundary deflection is quadratic.
Secondly to achieve higher order variations, an optional number of extra hierarchic modes
is introduced along with the hierarchic DOF, ai for 0[, hi for O2, Pi for W, qi for iJJI, r i for
iJJb which are conveniently associated with mid-side node Z (see Fig. 1). Thus, along the
side A-Z-B of a particular element (see Fig. 1), the frame functions are finally defined by

(51)

(52)

(53)

(54)
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where p is shown in Fig. 1 and where

N\ = (1- p)/2, N2 = (1 +p)/2, N3 = p(p-l)/2, N4 = p(p+ 1)/2,

Ns = l_p2, Mi = /-\(1_p2)

4591

(55)

The coefficient y is equal to + 1 or -1 according to the orientation of the side A-Z-B (see
Fig. 1) in the global coordinate system (X, Y) :

(56)

The purpose of the coefficient y is to ensure a univocal definition of the frame functions tJ
in terms of parameters aibiPlJi and r;, common to two elements sharing the mid-side node Z.

The generalized boundary forces and displacements can be easily derived from (19)­
(22), (41), (42) and (46), and denote

(57)

(58)

(59)

where

__ {tJn }_ [n\ n2 ]{tJ\}v - - - - = Q5 din
US S\ S2 U2

W. ~ lB ~ [~
0 :,]lD ~ Q.d~,nl

Sj S2 ({J2

(60)

(61)

(62)

Ql = [~;~J (i = 1,2,5)

o {o o}T
V = !1Un!1Us ,

o {o 0 TN = !1Nn!1Nns } ,

[
Qil]

Qi = Qi2' (i = 3,4,6)

Qi3
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Wb = {Ll WLlc,OnLlc,OsV,

1\1 = {LlRLlMnLlMnsV,

[n< ny 0 0 0

A= ~ 0 ni ni ~,n, ].
0 nisI n2 s2 nls2 +n2s 1

G = {Qx Qy Mx My 'VM xy

2.4. Particular solution
The particular solution of u and W can be obtained by means of their source (or

Green's) functions. The source functions of (l4)~(l8) used are as follows (Qin, 1993)

Ur3(P, q) = AC2Ko(Z2)(l-DC2/C) +BYo(ZI)(l +DCI/C),

U:3 (p,q) = -[B~YI(ZI)+A~KI(Z2)]COS(P-¢)

U~3(P,q) = -[B~YI(ZI)+A~Kl(Z2)]sin(p-¢)

rpq = J(Xq-Xp)2+(Yq-Yp)2

where U':m(P, q) designates the in-plane displacements (for m = 1,2) or deflection (for
m = 3) or rotations (for m = 4, 5) at field point q of an infinite plate when a unit point
force (for n = 1,2, 3) is applied at the source point p, Km () is a modified Bessel function of
the second kind with order m, Yrn() is a Bessel function of the second kind with order m,
angles Pand ¢ are shown in Fig. 2, and where

Thus the particular solutions of (41) and (42) can be expressed as

y
n

o

Fig. 2. The definition of p, r/>.

(63)

(64)
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for Winkler type foundation,

The area integration in (63) and (64) will be performed by numerical quadrature using the
Gauss-Legendre rule.

2.5. Modified variational principle
The HT FE formulation for nonlinear analysis of thick plates can be obtained by

means of a modified principle (Qin, 1994). The related functional used for deriving HT FE
formulation can be given in the form (Qin, 1994)

r;;,u, = L{r~u, + I (R* - R) W de + I (I1Mn- Mn)cjJn de
e Jan: Jan!

+1 (I1Mns-MnJcjJsde-1 MTWbde} (66)
Jan;o Jan; I

where

I1X= X

r~n = f'l Vindn- I Nnl10nde- r Nnsl10sde
JOe Jan; Jan;

r~u, = fT Vou' dn- f RI1W de- f Mnl1c"Pn de- f Mnsl1c"Ps deJQ e an; anJ an~

{
k w W2 /2

V* =
(kp fV2 +Gp W,i W,J/2 for Pasternak type foundation

and where (14)-(18) are assumed to be satisfied, a priori. The terminology "modified
principle" refers, here, to the use of conventional potential functional Cn (or r ou,) and some
modified terms for the construction of a special variational principle.

The boundary an of a particular element consists of the following parts

ane = an; u an; u an; 1 = an~ u an: u an; I = an; u an~ u an; 1

= an~ u an~ u an; 1 = an~ u an;o u an; 1

where

an; c Cu. n an" an; c CN• n an" an~ c Cu, n an" an: c CNn, nan"

an; c Cw n an" an~ c CR n an" an~ c C"'n n an" an~ c CMn nan"

an~ c Ccp, nan" an;o c CM., nan"
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and an~ 1 is the interelement boundary of the element. Consequently, we will discuss some
properties and their proof on these two functionals. They are

(i) Modified complementary principle

15r;;: = 0 =(19),(21) and U~ = 0;;, U; = U;, (on one n anJ) (67)

or:;Zut = 0 =(20),(22) and W = wr, cp~ = q;,;, cp; = q!;, (on aOe n aOJ) (68)

(ii) Theorems on the existence of extremum:
(a) if the expression

is uniformly positive (or negative) at the neighborhood of oo(uo = {UlOUZO}), where Do is
such a value that r;;:(uo) = (r;;:)o, and where (r;;:)o stands for the stationary value of r;;:.
We have

(70)

(b) if the expression

(71)

is uniformly positive (or negative) at the neighborhood of wo(wo = {WoIPIOIPZO})' where Wo

is such a value that r:ut(wo) = (r:;'ut) 0, and where (r:;'ut)o stands for the stationary value of
r:ut' We have

(72)

where "e" and "I' stand for any two neighboring elements and where De = iY is identical
on one n aOfdue to the property of the assumed frame field [see (46)].

PROOF: from the first, we derive the stationary conditions of functional r;;:. To this
end, taking variation of r;;: and noting that (14) and (15) hold a priori by the previous
assumption, one obtains

(14)(15) f . _. f . _. i' - .15r;;:= (Un -LiUn)15Nnde+ (Us-LiUs)JNns de- (Nn-!J.N:)15Unde
c~ c~ c~

- r (Nns-LiN:s)JUsdc-I r [(Un-On)JNn+(Us-Os)15Nnsldc (73)
JCN~, e Janp

(14)(15)

where the constrained equality = stands for the eqns (14) and (15) being satisfied a
priori. Therefore, the Euler equations for (73) are (19), (21) and

The principle (67) has been, thus, proved.
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As for the proof of the theorem on the existence of extremum, we may complete it by
way of the so-called second variational approach (Simpson and Spector, 1987; He and
Qin, 1993). In doing this, taking variation of () 1;;: and using the constrained conditions
(14) and (15), we see

= expression (69) (74)

So the theorem has been proved from the sufficient condition on the existence of local
extreme of a functional (Simpson and Spector, 1987). With the same way as above, one
may easily prove the inequality (72), and we omit those details here.

2.6. Element matrix
Element stiffness matrices may be obtained by setting <5(1;;:)e = 0 and <5(1:;'.,)e = O. To

simplify the derivation, all domain integrals in (65) and (66) are transformed into boundary
ones except those loading terms by use of solution properties of the intraelement trial
functions, for which the functionals (1:;'.,)e and (1;;:)e are rewritten as

(75)

(1:;'.,)e = ~f'r P3 wdn-f RAWdC-f MnA([Jndc- r MnsA([JsdcJne an; an] Jan~

- r (R-R*)Wdc-f (Mn-M~fn)CPndC-f (Mns-AMn.}cpsdc
J~: a~ a~o

(76)

The substitution of (41), (42), (46) and (57)-(62) into (75) and (76), obtains

where

H in = H~+ (H~)T

(79)

(80)
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-f [L1WQIl +QIl (JR-R*)] dc-f [L1cPnQI2 +QI2(L1Mn-L1Mn)] dc
an~ an!

-f [L1cPsQI3 +QL (L1Mns - L1Mns)] dc
an~o

(81)

(82)

(83)

(84)

(85)

(86)

Note that all terms not involving c and d are of no significance for an approximate
solution and are therefore not listed explicitly.

To obtain the element stiffness matrices, taking vanishing variation of (77) and
(78) with respect to c at the element level, we have

(87)

(88)

which lead to
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(89)

(90)

(91)

(92)

As a consequence the functionals (r;;:)e and (r:;'ut)e can be expressed only in terms of
d and other known matrices.

(94)

and then the customary force-displacement relationships may be given by

Kindin = Pin (95)

Koutdout = Pout (96)

where

K;n = G~HinGin (97)

Kout = GJUlHoutGour (98)

Pin = G~Hingin+r2 (99)

POul = GJutHoutgout+ r 4 (100)

Moreover, to ensure a good numerical conditioning during the inversion of
matrices Hin and H oUl the homogeneous solutions N k in (41) and (42) have to be
expressed in terms of suitably scaled local coordinates (x,Y) originated at the element
centroid (Fig. 1)

x = (X-Xc)ja, Y = (Y - YJja

where X and Yare global coordinates, Xc and Yc stand for global coordinates at
centroid of the element, and a is the average distance between the centroid and node
i of the element:

N

a= i}x; +y;)/12 jN

and where N is the nodal number of the element.
Besides, it should be pointed out that the standard HT formulation implies that

all terms representing the rigid body modes (three in each case, in-plane or out-of­
plane) have been discarded from the intraelement field to prevent the matrices H in
and H oUl from being singular. However, after the FE assembly has been solved for
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nodal displacements, those missing terms can easily be recovered. The intraelement
field iJ in an element may be argumented by the rigid body modes:

where

(101)

(102)

N =[' 0
In 0 1

(103)

Using a least square procedure to match with the nodal parameters U i at comer
nodes:

(104)

(105)

where L extends over all nodes of the element, which yields

where

(106)

o
1 (107)

["'
x;a2

y,a' ]
Rout =~I X; xl+a2

XiYi
a2

;

Yi X;Yi yl+a2

(108)

(109)

(110)

The above outlines general formulation followed and is applicable to the element
model considered here. But the use of this formulation should obey the following
rule. This rule is described that the lower limit on the number min and maUl of internal
parameters Cmand CaUl is prescribed by the necessary (but not sufficient) rank condition
(Jirousek and Venkatesh, 1992)
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where (N DOF)in and (N DOF)out are the size of element DOF for in-plane and out­
of-plane displacements, respectively.

2.7. Iterative scheme
Since Pin and Pout contain the unknown variables (0102W), an iterative procedure

is, thus, required. Before describing the scheme, however, let us study some properties
of Pin- It can be seen from the definition of Pin that it only depends upon W. SO only
an initial value WO is required. As long as the value of W in n is known, we can
calculate the pseudo-load Pim and then all of unknown variables in (95) are in-plane
displacements (0102), We may solve (95) for them. As a consequence, Pout can be
calculated from the current values of (0102W). An iterative scheme may be proposed
according to the above analysis. Specifically, suppose that U1, U~ and W* stand for
kth approximations, which can be obtained from the preceding cycle of iteration. The
(k+ 1) solution may be evaluated as follows

(a) Assume the initial value W> and u;o in n if the current loading step is not
the first one, but (k+ l)th step, WO and WO in n may be taken as Wk and W\
where Wk and W k stand for the incremental and the total deflection at kth
loading step, respectively.

(b) Enter the iterative cycle for i = 1,2, .... Calculate Pin in (95) by means of
(99), solve (95) for the nodal displacement vector dl~, and then determine
the values of O\i) and o<~) in n.

(c) Calculate POUI using the current values of U, then solve (96) for d~~, and
determine the value of ff'\o in n.

(d) If Ci = [(d(O)Td(O - (d(i-I)?dU-I)]/(dU-I))TdU-I) ~ C (c is a convergence tol-
erance), proceed to the next loading step and calculate

Uk+ 1 = U<k) + iJU), iJk+ I = iJ<1}

otherwise, set

and go back to step (b).

3. NUMERICAL APPLICATIONS

Since the main purpose of this paper is to outline the basic principles of the proposed
method, the assessment will be limited to three simple examples. In order to allow for
comparisons with other solutions appearing in references (Katsikadelis, 1991; Ng and Das,
1986; Smaill, 1991), the obtained numerical results are limited to a circular plate on a
Winkler-type foundation, a skew sandwich plate on a Winkler-type foundation and an
annular plate on a Pasternak-type foundation. To study the convergence properties of the
proposed method, three meshes for the solution domain are used in each example. In all
the calculations, the convergence tolerance is c = 0.0001.

Example 1: a circular plate on a Winkler-type foundation. Consider a uniformly loaded
circular plate resting on a Winkler-type foundation, and with radius a and clamped movable
edges (i.e., W= Cpn = Cps = Nn = Nns = 0). Some parameters for the problem are assumed
as
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Fig. 3. Three element meshes for example I.

A quadrant of the plate is modeled by three meshes (see Fig. 3) and the loading step
is taken as LlQ = 1. Table 2 shows the deflection w(w = W/ t) along the radius of the plate
and compares with the boundary element solution (Katsikadelis, 1991). Table 3 shows the
results of deflection wvary with M, here M is the number of hierarchic degrees of freedom.
In all three examples, the hierarchic degrees of freedom were defined by:

Table 2. Deflection IV along the radius r in the circular plate (M = 0)

ria 0.098 0.304 0.562 0.800 0.960
20 cells 1.090 0.948 0.581 0.169 0.009

HTFE 36 1.106 0.957 0.588 0.174 0.008
52 1.110 0.962 0.591 0.180 0.008

Katsikadelis 1.108 0.961 0.592 0.179 0.009

Table 3. Deflection IV vs M for example I (36 cells)

M 0 I 3 5 6 8 10
ria = 0.098 1.106 1.108 1.110 1.110 1.112 1.112 1.112
0.304 0.957 0.960 0.961 0.961 0.964 0.964 0.965
0.562 0.588 0.591 0.592 0.592 0.594 0.594 0.593
0.800 0.174 0.177 0.177 0.179 0.180 0.181 0.181
0.960 0.008 0.009 0.008 0.008 0.007 0.007 0.007
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Fig. 4. A CI 60" skew sandwich plate resting on an elastic foundation.

Example 2 : a 60° skew sandwich plate on a Winkler-type foundation. The skew plate is
clamped immovable on all edges (i.e., Un = Us = W = <Pn = <Ps = 0 on the whole boundary)
shown in Fig. 4. Some initial data are

v=0.32, t=0.635mm, h=25.4mm, a=b=508mm, z=t+h,

Gc = 6.89 MPa, Q = 12a3 (I-v 2 )qj(tz2 E), K= 12a3 k w (l-v 2 )j(ztE)

where 2a stands for the length of the skew plate (see Fig. 4). The plate is equally divided
into Nx N (N = 2,4 and 6) elements. The loading step is dQ = 12.5. Table 4 compares the
present results with those obtained by Ng and Das (1986) in which the values were obtained
from Fig. 11 in their paper. Table 5 lists the relationship between central deflection Wclh
andM.

Example 3: an annular plate on a Pasternak-type foundation. The annular plate is
subjected to a uniform distributed load q(Q = ga4 jE") and resting on a Pasternak-type
foundation. The inner boundary of the plate was in a free edge condition while the out
boundary condition was clamped immovable. Some initial data used in the example are
given by

Table 4. Deflection W,/h vs Q for the sandwich plate (M = 0)

Q 25 50 75 100 125
2x2 0.591 0.862 1.026 1.161 1.283

HTFE 4x4 0.598 0.871 1.037 1.178 1.298
6x6 0.603 0.875 1.045 1.185 1.304

Ngand Das 0.60 0.87 1.05 1.18 1.30

Table 5. Central deflection W,/h vs M for example 2 (4 x 4)

M 0 I 3 5 6 8 10
Q = 25 0.598 0.601 0.603 0.603 0.605 0.606 0.606

50 0.871 0.874 0.875 0.875 0.876 0.976 0.877
75 1.037 1.040 1.042 1.043 1.047 1.049 1.050

100 1.178 1.183 1.183 1.184 1.187 1.188 1.188
125 1.298 1.301 1.302 1.302 1.306 1.307 1.308
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Fig. 5. Three element meshes in example 3.

a

where a is the outer radius, and b the inner radius (see Fig. 5). In the example, a quarter of
the plate is modeled by three meshes shown in Fig. 5. The loading step is taken as flQ = 5.
Some results obtained by the proposed method are listed in Tables 6 and 7.

It can be seen from the above tables that the results obtained by the present method
agree well with the existing results. As expected for all examples, it is also found from
Tables 2, 4 and 6 that the proposed formulation yields converging values along with
refinement of the element meshes. The results in Tables 3, 5 and 7 show that the hierarchic
DOF Pi qi r i are more important than in-plane DOF ai bi in these examples. In the course
of computations, convergence was achieved with about 8 iterations for example 1, 15
iterations for example 2 and 12 iterations for example 3 at each load step.

Table 6. Maximum deflection Wmlt vs Q for example 3 (M = 0)

Q 10 15 20 25 30
16 cells 0.491 0.725 0.920 1.082 1.227

HTFE 32 0.508 0.732 0.929 1.095 1.238
48 0.513 0.738 0.935 1.105 1.243

Smaill 0.51 0.74 0.93 1.10 1.24

Table 7. Maximum deflection Wmlt vs M for example 3 (32 cells)

M 0 I 3 5 6 8 10
Q=1O 0.508 0.512 0.513 0.515 0.518 0.518 0.519
15 0.732 0.735 0.736 0.736 0.739 0.740 0.742
20 0.929 0.933 0.935 0.936 0.940 0.942 0.943
25 1.095 1.099 1.099 1.100 1.103 1.103 1.104
30 1.238 1.242 1.244 1.244 1.248 1.250 1.251
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4. CONCLUSIONS

A HT FE model with p-method capabilities has been presented for nonlinear analysis
of Reissner plates on an elastic foundation. As far as we know, previous HT FE results
only deal with the linear problems. However, an elastic plate can undergo deformations
that are obvious to the unaided eye. Often such deformations are nonlinear in the sense
that the displacements at a given point on the plate are not proportional to the magnitude
of the applied load, and therefore a nonlinear analysis is required to treat such a category
of behavior. The basic contributions of the paper are: (i) aT-complete set of homogeneous
solutions for Reissner-Mindlin plates on elastic foundations has been derived and used to
represent the intraelement displacement and rotation fields; (ii) some modifications on
nonlinear boundary equations have been proposed to make the related derivation tractable.
The practical efficiency of these modifications has been assessed through three numerical
examples which have shown that the new p-element is robust, more accurate in terms of
the number of unknowns and of the computational effort; (iii) a modified variational
principle for nonlinear analysis of thick plates on an elastic foundation has been presented
and used to derive HT FE formulation. The attractiveness of this new element can further
be enhanced by the implementation of special, globally based load terms which enable
various discontinuous loads (line loads, concentrated loads, etc.) to be accurately handled
without tedious and expensive mesh adjustment.
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